ENC7480 编码器计数及 I/O 控制卡

使用手册

Version 1.2

版权所有 不得翻印

©Copyright 2007 Leadshine Technology Co.,Ltd. All Rights Reserved.

版权说明

本手册版权归深圳市雷赛智能控制股份有限公司所有,未经雷赛公司书面许可,任何人不得翻 印、翻译和抄袭本手册中的任何内容。

本手册中的信息资料仅供参考。由于改进设计和功能等原因, 雷赛公司保留对本资料的最终解释权, 内容如有更改, 恕不另行通知。

调试机器要注意安全!用户必须在机器中设计有效的安全保护装置,在软件中加入出错处理程序;否则所造成的损失,雷赛公司没 有义务或责任对此负责。

- 3	<u>v</u>
-	1

第一章	概述	4
1.1	产品简介	4
1.2	产品特点	4
1.3	技术指标	5
1.4	产品应用领域	6
1.5	支持软件	6
第二章	硬件软件安装	7
2.1	打开包装	7
2.2	ENC7480 编码器计数卡的外观	7
2.3	缺省的跳线设置	8
2.4	ENC7480 卡的安装	8
第三章	ENC7480 工作原理和功能介绍	13
3.1	输入信号模式(EA、EB)	13
3.2	触发信号及触发模式(TR)	14
第四章	信号接口定义及其应用	15
4.1	X1 接口定义	15
4.2	X2 接口定义	15
4.3	X3 接口定义	16
4.4	X4 接口定义	17
4.5	接口信号的连接	17
4.6	接线举例	20
第五章	ENC7480 测试软件使用	24
第六章	应用软件开发	28
6.1	用户应用软件开发简介	28
6.2	Visual Basic 6.0 环境下的软件开发介绍	28
6.3	Visual C++ 6.0 环境下的软件开发介绍	29
6.4	ENC7480 功能函数	29
第七章	功能函数详解	30
7.1	intstdcall Enc7480_Init(void);	30
7.2	voidstdcall Enc7480_Close();	30
7.3	longstdcall Enc7480_Get_Encoder(WORD axis);	30
7.4	voidstdcall Enc7480_Set_Encoder(WORD axis,long value);	31
7.5	longstdcall Enc7480_Get_LatchValue(WORD axis);	31
7.6	voidstdcall Enc7480_Count_Config(WORD axis,WORD mode);	31
7.7	voidstdcall Enc7480_Set_Triger_Logic(WORD logic);	32
7.8	voidstdcall Enc7480_Set_EZ_Logic(WORD axis,WORD enable,WORD logic));32
7.9	long_stdcall Enc7480_Read_Latch_Status(WORD cardno);	33
7.1	0 voidstdcall Enc7480_Reset_Latch_Flag(WORD cardno);	34
7.1	1 voidstdcall Enc7480_Reset_Cls_Flag(WORD cardno);	34
7.1	2 voidstdcall Enc7480_Write_OutBit(WORD bitno,WORD Off_On);	34
7.1	3 voidstdcall Enc7480_Write_OutPort(WORD cardno,DWORD value);	35
7.1	4 longstdcall Enc7480_Read_OutPort(WORD cardno);	35

7.15 longstdcall Enc7480_Read_InPort(WORD cardno);	
7.16 longstdcall Enc7480_Led_Logic(WORD cardno WORD Logic);	
第八章 编程示例	
8.1初始化示例:	
8.2 编码器计数值操作示例:	
8.3位置锁存操作方法,流程及示例:	
8. 4I/O口操作示例:	41
第九章 常见故障排除方法	41
9.1 概述	41
9.2 故障及排除	41
第十章 接线板定义 I/O 特性	
10.1 非隔离接线板 ACC37-74ENC 引脚表(1)	
10.2 非隔离接线板 ACC37-74ENC 引脚表(2)	
10.3 I/O 隔离参考图电路以及输出口负载能力曲线	
第十一章 选型指南	
可选附件图片	

第一章 概述

1.1 产品简介

ENC7480增量式编码器计数卡为旋转编码器、光栅尺等工业测量元件提供了 PC机信号采集接口,使位置、速度和加速度的测量变得十分简便,广泛应用于 影像测量仪、坐标测量机、机床测量系统等自动化设备上。

基于FPGA设计的ENC7480可以采集4轴正交编码器信号,计数器为28位,输入频率为4MHz,并具有外部信号触发后硬件自动高速锁存位置的功能;同时还提供了大量的I/O端口。

ENC7480配有功能完善的软件,包括驱动软件、函数库、例程等内容。软件可以在Windows 98/2000/ME/XP/NT/7系统上运行,可以用Visual Basic、Visual C++调用API函数库。

ENC7480为设备制造商、一般用户研发基于PC机的、功能强大、灵活简便的测量系统提供了良好的条件。

1.2 产品特点

说明:本手册所指编码器为直线编码器(即光学尺)和增量式旋转编码器的统称;

EA+ / EB+ / EZ+为差分输出编码器同向端输出, EA- / EB- / EZ-为差分输出编码器反向端输出, 其中 EZ 信号为编码器索引信号,编码器旋转一周出现一次;

A+/B+/RI+为差分输出光学尺同向端输出,A-/B-/RI-为差分输出光学尺反向端输出,其中RI信号为光学尺零窗信号,一般每隔50mm出现一个,有些型号光学尺只有一个,大约位于光学尺行程的中间位置,该信号又称作"尺中信号"、"参考点"。

以下无特别说明,对 EA 信号的描述适合于 A 信号,同样的对 EB、EZ 信号的描述适用 于 B、RI 信号。

- 1) 32 位 PCI 总线,地址和中断自动分配
- 2) 四轴编码器差分或单端触发信号输入
- 3) 四轴编码器尺中(RI)清零信号
- 4) A/B 信号最高输入频率 4MHz
- 5) 四轴编码器差分或单端 A/B 或非 A/B 信号输入
- 6) 通用 32 位数字量输入口
- 7) 通用 32 位数字量输出口,上电时输出电平可用跳线设置
- 8) 一个外部触发锁存信号 TR1,该信号可外接接触式测头或者脚踏开关,但同一时刻只能使用一个。后续章节有使用测头的说明和例程,事实上,这些说明完

全适用于脚踏开关。

- 9) ENC7480 函数库及 Windows 98/2000/ME/XP/NT/7 的 DLL
- 10) 支持多种 Microsoft 应用开发软件
- 11) ENC7480 演示软件, API 函数熟悉测试软件
- 12) 接触式测头触发位置锁存编程操作流程图和源代码

1.3 技术指标

1.3.1 技术性能

- 1) 编码器输入轴数:4轴
- 2) 最高输入频率: 4MHz(A/B 单路脉冲,未倍频)
- 3) 计数脉冲范围: -134,217,727~134,217,728 个脉冲(28 位)
- 4) 可选触发锁存信号: 差分或单端, 触发电平可设置
- 5) 四路编码器尺中(RI)清零信号用于回零。差分或单端,清零电平 可设置
- 6) 32 位通用数字量输入口。DB37 针隔离的接线板或者 DB37 针非隔离的接线板 3.3V@LVCMOS
- 7) 32 位通用数字量输出口,上电时输出电平可用跳线设置。DB37 针 隔离的接线板或者 DB37 针非隔离的接线板 3.3V@LVCMOS

1.3.2 数字量 I/O 信号

- 1) 32 位输入, 32 位输出口
- 2) 与外部触发锁存信号 TR1 同步的 LED 及蜂鸣器输出口,输出电平可 设置

1.3.3 接口特点

- 1) 采用一个 37 针 DB 连接器与编码器、触发信号连接
- 2) 采用两个 37 针 DB 连接器和一个 IDC20 针连接器与外部 I/O 连接

1.3.4 使用环境

- 1) 工作温度: 0℃~50℃
- 2) 贮存温度: -20℃~80℃
- 3) 湿度: 5~85%, 非结露

1.3.5 电源参数

插槽电源(输入): :+5VDC±5%,最大 900mA 插槽电源(输入): +3.3VDC±5%,最大 1500mA 每轴输出给编码器工作电压: 5V±5%,最大 100mA

外部电源(输入): +12V~24VDC±5%,最大 500mA

1.3.6 外形尺寸

164mm(L) \times 98.4mm(H)

1.4 产品应用领域

- 1) 手动坐标测量机
- 2) 手动影像测量仪
- 3) 机床测量系统
- 4) 自动化及过程控制
- 5) 控制系统诊断
- 6) 精密测量分析仪器
- 7) 半自动化定位机器
- 8) PC 机数显
- 9) I/O 控制
- 10) 其他需要精确位置、长度测量的设备

1.5 支持软件

为了用户使用各种方式建立自己的应用系统, 雷赛提供了通用的驱动软件。 雷赛不仅提供了适合基于 WINDOWS 的控制系统编程使用的编程支持库, 例如 动态链接库 DLL, 而且, 还提供了专用的测试软件, 使用测试软件, 用户可以 检测该产品硬件和软件安装的正确性。同时还能帮助用户快速组建自己的应用控 制系统。另外, 还提供了实现主要功能的源码和某些操作的流程图(见第八章), 软件工程师借此能够在很短的时间内, 完成系统软件的设计工作。

第二章 硬件软件安装

在这章中,主要介绍如何设置 ENC7480 卡的跳线以满足各种使用需求;介 绍如何安装硬件、软件,以及各种接口的定义等等。建议用户在使用产品之前, 首先仔细阅读本章节。

2.1 打开包装

ENC7480 卡含有对静电敏感的元器件,容易被静电损坏,打开防静电袋前 请用手触摸计算机机箱金属部分,以释放人体所带静电。

由于运输和搬运过程中,可能会引起损坏,所以,在打开包装之前,请仔细 检查外包装是不是有明显的损坏,并确定各个元器件的位置是否正确,跳线帽是 否缺失。

提示:如果卡已经被损坏,请勿使用!

2.2 ENC7480 编码器计数卡的外观

图 2-1 ENC7480 卡的外观

2.3 缺省的跳线设置

计算机电源接通之后,应用软件运行之前,某些外部设备对输出口电平的特定要求,比如控制气缸的电磁阀、继电器等在应用软件发出指令之前,应该处于常态,使用 ENC7480 卡上的四个跳线座 JP1、JP2、JP3、JP4,可设置输出口的上电初始状态,以满足应用需要。

注意: 当跳线设置输出反向时, 注意程序编写时函数参数的变化, 详见 API 函数说明。

出厂时的缺省设置为 JP1、JP2、JP3、JP4 全为开路,输出口的上电初始状态与使用的接线板类型有关,具体电平如下表所示:

输出口	上电初始为低电平	上电初始为高电平
OUT1~8	JP1 短路	JP1 开路
OUT9~16	JP2 短路	JP2 开路
OUT17~24	JP3 短路	JP3 开路
OUT25~32	JP4 短路	JP 4 开路

2.4 ENC7480 卡的安装

2.4.1 硬件设置

ENC7480 卡 I/O 地址的选择由系统 BIOS 自动指定,像所有的支持即插即用的 PCI 卡(如声卡,Modem 卡,网卡)一样,系统 BIOS 均可为其自由分配一个工作地址,也可在系统 BIOS 中手工设置。

2.4.2 硬件安装步骤

- 1) 触摸 PC 机机箱完全放掉身上的静电,拔除 PC 机及一切与 PC 相连设备的电源。
- 2) 拆开 ENC7480 包装袋,注意不要接触到除 ENC7480 卡固定片和 ENC7480 卡两条边以外的任何部分。
- 3) 如果使用 I/O 口,请按照本手册的说明,根据使用需求设置好跳线 J1~J4。
- 4) 将 ENC7480 卡垂直插入电脑 PCI 插槽中。使用 I/O 接口的用户,请将 I/O 接口固定片装在与 ENC7480 卡相邻的位置以便于使用。
- 5) 用螺丝紧密固定,做到安装稳定可靠。

2.4.3 ENC7480 资料光盘

1、ENC7480_API_TOOL: 一个 ENC7480API 测试工具(在 Samples 文件夹下的 VC6.0 例程中),包括源代码,利用该工具可手工输入函数名,函数参数,

并指定执行次数,观察执行返回值和效果。

2、使用手册:包括用户手册和 ENC7480 计数卡的安装和卸载方法。

3、inf: ENC7480 驱动程序附件; ENC7480 不同于一般的声卡显卡等硬件, 在"找到新硬件向导"安装完驱动程序后必须启动这个程序并按提示进行才完成 安装; 卸载操作也一样需要在"资源管理器"中卸载后再次运行这个程序选择 "REMOVE"完成卸载。

4、Samples: ENC7480 简单应用例程,其中演示了如何调用 ENC7480 API 函数,初始化内容,参数设置,读取计数值,使用探针锁存功能,回原点(RI) 操作。

建议自行编程时按照例程中的方法,对所有需要设置的参数显式设置一次,而不使用板卡的默认参数,使得程序清晰明了。

5、函数库:硬件驱动程序,VC/VB调用API函数所需要的文件。

6、motion: ENC7480 的 DEMO 程序,利用它可以方便快速的熟悉和测试 ENC7480 的功能。

2.4.4 驱动程序的安装

雷赛ENC7480卡的驱动程序遵从32bit PCI卡驱动标准,其安装方法类同普通 32bit PCI卡驱动程序的安装方法。下面以Windows XP操作系统下的安装为例:

- 1、将资料光盘插入光驱。
- 2、在 \ENC7480\inf\inf_winxp 目录下,双击执行"regist2k.bat"批处理文件, 把 ENC7480 卡注册到 XP 系统中,注册好后会自动关闭注册窗口。
- 3、关闭操作系统,拔除 PC 电源线,将读数卡安装到 PC 上,然后重新开机。
- 4、系统启动后会提示找到新硬件,在"找到新的硬件向导"界面中,如图 2-2, 选择"从列表或指定位置安装(高级)(S)",点击"下一步",系统将弹出 "找到新的硬件向导"另一界面,如图 2-3。

找到新的硬件向导	
	欢迎使用找到新硬件向导
	这个向导帮助您安装软件:
	PCI 数据捕获和信号处理控制器
	如果您的硬件带有安装 CD 或软盘,请现在将 其插入。
	您期望向导做什么?
	○ 自动安装软件(推荐)(L) ④ 以列表或指定位置安装(高级)(C)
	要继续,请单击"下一步"。
	<上一步(B) 下一步(D) > 取消

图2-2 新的硬件安装向导界面

5、在图2-3所示的向导中,点选"在这些位置中搜索最佳驱动程序(S)"并勾 选上"在搜索中包括这个位置",点击浏览 。

找到新的硬件向导	浏览文件夫	? 🗙
请选择您的搜索和安装选项。	选择包含您的硬件的驱动程序的文件夹。	
 ● 在这些位置上搜索最佳驱动程序(2)。 使用下列的复选框限制或扩展默认搜索,包括本机路径和可移动媒体。会到的最佳驱动程序。 □ 搜索可移动媒体(软盘、CD-ROM)(0) ☑ / 在搜索中包括这个位置(0)::: ④ / 在搜索中包括这个位置(0)::: ⑤ · · · · · · · · · · · · · · · · · · ·	 È ENCT360 ♣ È ENCT431V1.1 ■ È ENCT480v1.2 ■ inf win7 ☆ inf_win7 ☆ inf_win98 ☆ inf_winxp È motion 要查看任何子文件夹,请单击上面的 + 号。 确定 取;	▲ ●
〈上一步 @) 下一步 @) 〉		

2-3 浏览并选择安装文件夹 inf

6、在弹出的"浏览文件夹"的窗口中,找到光盘中\ENC7480v1.2 \inf\inf_winxp 目录后,点击"确定",如图 2-3。

7、在图 2-4 中, 点击"下一步"继续安装;

找到新的硬件向导
请选择您的搜索和安装选项。
 在这些位置上搜索最佳驱动程序(2)。 使用下列的复选框限制或扩展默认搜索,包括本机路径和可移动媒体。会安装找到的最佳驱动程序。
□ 搜索可移动媒体(软盘、CD-ROM)(M)
☑ 在搜索中包括这个位置 @):
G:\ENC7480v1.2\inf\inf_winxp 🛛 浏览 图
○ 不要搜索。我要自己选择要安装的驱动程序 @)。 选择这个选项以便从列表中选择设备驱动程序。₩indows 不能保证您所选择的驱动程序与您的硬件最匹配。
< 上一步 (2) 下一步 (2) > 取消
图 2-4 开始安装驱动软件

8、如图 2-5 所示,向导正在安装 ENC7480 卡的驱动程序;

找到新的硬件向导	
肖导正在安装软件,请稍候	
Enc7480	
6	
	〈上一步 (8) 下一步 (8) 〉 取消

图2-5 安装驱动软件进行中

9、等待安装完成,显示如图 2-6 所示界面,点击"完成"。

找到新的硬件向导	
	完成找到新硬件向导
	该向导已经完成了下列设备的软件安装:
	Enc7480
	要关闭向导,请单击"完成"。
	< 上一步 (B) 完成 取消

- 图2-6 完成ENC7480卡的安装
- 10、至此雷赛 ENC7480 卡的驱动程序安装完成,可以正常使用了。

图2-7 安装ENC7480卡驱动成功的标志

注意 1: ENC7480 卡装好驱动后,打开设备管理器,会显示注册好卡的标志 和驱动装好的标志,如图 2-7 所示。必须要有这两个标志,否则找不到卡。

注意2: 在Win7系统下装ENC7480的驱动时,要将7480卡WIN7驱动文件夹下面的"inf"文件夹(\ENC7480v1.2\inf\inf_win7)拷到C盘根目录下。其他步骤与上述一致。具体的步骤可以参考ENC7480v1.2\inf\inf_win7 下的"7480安装WIN7驱动.pdf"。

2.4.5 演示程序的安装

演示程序无需安装,直接运行即可。

第三章 ENC7480 工作原理和功能介绍

图 3-1 ENC7480 结构原理框图

3.1 输入信号模式(EA、EB)

ENC7480卡有两种信号输入模式。

① 非 A/B 模式输入

ENC7480 卡可以输入非 A/B 模式信号:为脉冲+方向形式。EA 接脉冲 信号,EB 接方向信号,高电平对应增计数,低电平对应减计数。见图 3-2。

图 3-2 非 A/B 模式输入信号图

② A/B 模式输入信号

EA 信号领先 EB 信号 90°时,增计数。EB 信号领先 EA 信号 90°时, 减计数。见图 3-3。

3.2 触发信号及触发模式(TR)

ENC7480卡有两种输入触发信号:

- 1. 清零信号来自编码器的索引信号(EZ1、EZ2、EZ3、EZ4) 这个信号用于将计数器内容清零。
- 2. 触发信号来自其它传感器的信号(TR),如接触式测头,相机快门输出等。 这个信号用于将计数器的当前值锁存到锁存寄存器。
- 3. 触发分上升沿触发和下降沿触发,见图 3-4。

上升沿触发→→──下降沿触发

图 3-4 触发信号及模式图

第四章 信号接口定义及其应用

4.1 X1 接口定义

X1 是编码器及触发锁存输入信号的接口,为 DB 型 37 针插座。针脚号、针脚名及其对应功能,见表 4-1。

脚号	名称	I/O	功 能	脚号	名称	I/O	功 能
1	5V	0	第一轴编码器电源	20	GND		电源地
2	GND		电源地	21	EA2+	Ι	第二轴编码器 A 相(+)
3	EA1+	Ι	第一轴编码器 A 相(+)	22	EA2-	Ι	第二轴编码器 A 相(-)
4	EA1-	Ι	第一轴编码器 A 相(-)	23	EB2+	Ι	第二轴编码器 B 相(+)
5	EB1+	Ι	第一轴编码器 B 相(+)	24	EB2-	Ι	第二轴编码器 B 相(-)
6	EB1-	Ι	第一轴编码器 B 相(-)	25	EZ2+	Ι	第二轴编码器 Z 相(+)
7	EZ1+	Ι	第一轴编码器 Z 相(+)	26	EZ2-	Ι	第二轴编码器 Z 相(-)
8	EZ1-	Ι	第一轴编码器 Z 相(-)	27	保留	Ι	
9	TR1-	Ι	触发锁存输入 1(-)	28	保留	Ι	
10	5V	0	第三轴编码器电源	29	GND		电源地
						_	
11	GND		电源地	30	EA4+	Ι	第四轴编码器 A 相(+)
11 12	GND EA3+	Ι	电源地 第三轴编码器 A 相(+)	30 31	EA4+ EA4-	I I	第四轴编码器 A 相(+) 第四轴编码器 A 相(-)
11 12 13	GND EA3+ EA3-	I I	电源地 第三轴编码器 A 相(+) 第三轴编码器 A 相(-)	30 31 32	EA4+ EA4- EB4+	I I I	第四轴编码器 A 相(+) 第四轴编码器 A 相(-) 第四轴编码器 B 相(+)
11 12 13 14	GND EA3+ EA3- EB3+	I I I	 电源地 第三轴编码器 A 相(+) 第三轴编码器 A 相(-) 第三轴编码器 B 相(+) 	30 31 32 33	EA4+ EA4- EB4+ EB4-	I I I I	第四轴编码器 A 相(+) 第四轴编码器 A 相(-) 第四轴编码器 B 相(+) 第四轴编码器 B 相(-)
11 12 13 14 15	GND EA3+ EA3- EB3+ EB3-	I I I I	电源地 第三轴编码器 A 相(+) 第三轴编码器 A 相(-) 第三轴编码器 B 相(+) 第三轴编码器 B 相(-)	30 31 32 33 34	EA4+ EA4- EB4+ EB4- TR1+	I I I I I	第四轴编码器 A 相(+) 第四轴编码器 A 相(-) 第四轴编码器 B 相(+) 第四轴编码器 B 相(-) 触发锁存输入 1(+)
11 12 13 14 15 16	GND EA3+ EB3- EB3- EZ3+	I I I I I	电源地 第三轴编码器 A 相(+) 第三轴编码器 A 相(-) 第三轴编码器 B 相(-) 第三轴编码器 B 相(-) 第三轴编码器 Z 相(+)	30 31 32 33 34 35	EA4+ EA4- EB4+ EB4- TR1+ EZ4-	I I I I I I	第四轴编码器 A 相(+) 第四轴编码器 A 相(-) 第四轴编码器 B 相(+) 第四轴编码器 B 相(-) 触发锁存输入 1(+) 第四轴编码器 Z 相(-)
11 12 13 14 15 16 17	GND EA3+ EB3- EB3- EZ3+ EZ3-	I I I I I I I	电源地 第三轴编码器 A 相(+) 第三轴编码器 A 相(-) 第三轴编码器 B 相(+) 第三轴编码器 B 相(-) 第三轴编码器 Z 相(-)	30 31 32 33 34 35 36	EA4+ EA4- EB4+ EB4- TR1+ EZ4- BUZ	I I I I I O	第四轴编码器 A 相(+) 第四轴编码器 A 相(-) 第四轴编码器 B 相(+) 第四轴编码器 B 相(-) 触发锁存输入 1(+) 第四轴编码器 Z 相(-) 蜂鸣器
11 12 13 14 15 16 17 18	GND EA3+ EB3+ EB3- EZ3+ EZ3+ EZ3-	I I I I I I I I	 电源地 第三轴编码器 A 相(+) 第三轴编码器 B 相(-) 第三轴编码器 B 相(-) 第三轴编码器 Z 相(+) 第三轴编码器 Z 相(-) 第三轴编码器 Z 相(-) 	30 31 32 33 34 35 36 37	EA4+ EB4+ EB4- TR1+ EZ4- BUZ LED	I I I I I 0 0	第四轴编码器 A 相(+) 第四轴编码器 A 相(-) 第四轴编码器 B 相(+) 第四轴编码器 B 相(-) 触发锁存输入 1(+) 第四轴编码器 Z 相(-) 蜂鸣器 测头 LED 正极

表 4-1	接线端子板 X 1	的定义
衣 4-1	按线hf T伙 AI	们止入

4.2 X2 接口定义

X2 是 I/O 信号的接口。为 IDC 型 40 针插针。针脚号和针脚名及其对应功能, 见表 4-2。

			衣 4- 2 按线机		的足入		
脚号	名称	I/O	功 能	脚号	名称	I/O	功 能
1	IN1	Ι	通用输入1	20	GND		PC 电源地
2	IN2	Ι	通用输入 2	21	OUT1	0	通用输出1
3	IN3	Ι	通用输入3	22	OUT2	0	通用输出 2
4	IN4	Ι	通用输入4	23	OUT3	0	通用输出3
5	IN5	Ι	通用输入5	24	OUT4	0	通用输出4
6	IN6	Ι	通用输入6	25	OUT5	0	通用输出5
7	IN7	Ι	通用输入7	26	OUT6	0	通用输出6
8	IN8	Ι	通用输入8	27	OUT7	0	通用输出7
9	IN9	Ι	通用输入9	28	OUT8	0	通用输出8
10	IN10	Ι	通用输入10	29	OUT9	0	通用输出9
11	IN11	Ι	通用输入11	30	OUT10	0	通用输出10
12	IN12	Ι	通用输入12	31	OUT11	0	通用输出11
13	IN13	Ι	通用输入13	32	OUT12	0	通用输出 12
14	IN14	Ι	通用输入14	33	OUT13	0	通用输出13
15	IN15	Ι	通用输入15	34	OUT14	0	通用输出14
16	IN16	Ι	通用输入16	35	OUT15	0	通用输出15
17	3.3V	0	PC 电源	36	OUT16	0	通用输出16
18	3.3V	0	PC 电源	37	GND		PC 电源地
19	GND		PC 电源地				

表 4-2 接线端子板 X2 的定义

4.3 X3 接口定义

X3 是 I/O 信号的接口。为 IDC 型 40 针插针。针脚号和针脚名及其对应功能,见表 4-3。

脚号	名称	I/O	功 能	脚号	名称	I/O	功 能
1	IN17	Ι	通用输入17	20	GND		PC 电源地
2	IN18	Ι	通用输入18	21	OUT17	0	通用输出 17
3	IN19	Ι	通用输入 19	22	OUT18	0	通用输出18
4	IN20	Ι	通用输入 20	23	OUT19	0	通用输出 19
5	IN21	Ι	通用输入 21	24	OUT20	0	通用输出 20
6	IN22	Ι	通用输入 22	25	OUT21	0	通用输出 21
7	IN23	Ι	通用输入 23	26	OUT22	0	通用输出 22
8	IN24	Ι	通用输入 24	27	OUT23	0	通用输出 23

表 4-3 接线端子板 X3 的定义

ENC7480 编码器计数卡使用手册 V1.2

9	IN25	Ι	通用输入 25	28	OUT24	0	通用输出 24
10	IN26	Ι	通用输入 26	29	OUT25	0	通用输出 25
11	IN27	Ι	通用输入 27	30	OUT26	0	通用输出 26
12	IN28	Ι	通用输入 28	31	OUT27	0	通用输出 27
13	IN29	Ι	通用输入 29	32	OUT28	0	通用输出 28
14	IN30	Ι	通用输入30	33	OUT29	0	通用输出 29
15	IN31	Ι	通用输入 31	34	OUT30	0	通用输出 30
16	IN32	Ι	通用输入 32	35	OUT31	0	通用输出 31
17	3.3V	Ι	PC 3.3V 电源	36	OUT32	0	通用输出 32
18	3.3V	Ι	PC 3.3V 电源	37	GND		PC 电源地
19	GND		PC 电源地				

4.4 X4 接口定义

X4 是 I/O 信号的接口。为 IDC 型 20 针插针。针脚号和针脚名及其对应功能, 见表 4-4。

脚号	名称	I/O	功 能	脚号	名称	I/O	功 能
1	SP1	Ι	通用输入1	11	SP11	Ι	通用输入11
2	SP2	Ι	通用输入2	12	SP12	Ι	通用输入12
3	SP3	Ι	通用输入3	13	SP13	Ι	通用输入13
4	SP4	Ι	通用输入4	14	SP14	Ι	通用输入14
5	SP5	Ι	通用输入5	15	SP15	Ι	通用输入15
6	SP6	Ι	通用输入6	16	SP16	Ι	通用输入16
7	SP7	Ι	通用输入7	17	SP17	Ι	通用输入17
8	SP8	Ι	通用输入8	18	SP18	Ι	通用输入18
9	SP9	Ι	通用输入9	19	SP19	Ι	通用输入 19
10	SP10	Ι	通用输入10	20	GND		PC 电源地

表 4-4 接线端子板 X4 的定义

4.5 接口信号的连接

4.5.1 方波脉冲信号及触发信号的连接

方波脉冲信号包括 EA、EB 和 EZ,每个轴都有三对差分的 A 相、B 相和 Z 相信号。

在 A/B 信号模式 EA 和 EB 用来输入 A/B 模式信号。在非 A/B 信号模式 EA 用来输入脉冲信号, EB 用来输入方向信号,高电平对应增计数,低电平 对应减计数。EZ 来自编码器的索引信号,用来同步清零。TR1 用作异步触 发锁存的输入信号。

4.5.2 信号名、针脚名和轴号对应关系

信号名、针脚名和轴号对应关系,请见表 4-5。

X1 针脚号	信号名	轴号	X1 针脚号	信号名	轴号
3	EA1+	1	12	EA3+	3
4	EA1-	1	13	EA3-	3
5	EB1+	1	14	EB3+	3
6	EB1-	1	15	EB3-	3
7	EZ1+	1	16	EZ3+	3
8	EZ1-	1	17	EZ3-	3
21	EA2+	2	30	EA4+	4
22	EA2-	2	31	EA4-	4
23	EB2+	2	32	EB4+	4
24	EB2-	2	33	EB4-	4
25	EZ2+	2	18	EZ4+	4
26	EZ2-	2	35	EZ4-	4
34	TR1+	1~4	27		
9	TR1-	1~4	28		

表 4-5 编码器和锁存信号定义表

4.5.3 差分信号输入原理

差分输入为 RS422 兼容设计, 在差分信号 EA+、EA-、EB+、EB-和 EZ+、EZ-及 TR1+、TR1-、TR2+、TR2-之间的电压差必须大于 3.5V。每对差分信号在卡内 部将被转化成 EA、EB、EZ、TR1、TR2 的 TTL 数字信号。EA 信号输入原理见图 4-1, EB、EZ、TR1、TR2 信号的原理与 EA 相同。

图 4-1 差分信号 EA 输入原理图

4.5.4 信号接线示例

① 差分模式

加在差分信号之间的电压须大于 3.5V,而且需要将计数卡和编码器的地连接在一起。EA信号接线方法见图 4-2,EB、EZ、TR1、TR2 信号的接法与 EA 相同。

图 4-2 差分信号接线图

② 集电极开路模式(单端输入)

集电极开路模式输入信号应接到 EA+、EB+、EZ+、TR1+端上, EA-、EB-、EZ-、TR1-端悬空,接到"一"端将导致不计数现象。EA 信号接线方法见图 4-3, EB、EZ、TR1 信号的接法与 EA 相同。

图 4-3 单端输入信号接线图

4.5.5 通用 I/O 信号

用户可使用的通用 I/O 信号有 32 路输入、32 路输出。非隔离接线板输入/ 输出为 3.3V@LVCMOS 电平,输出驱动能力 10 mA@3.3V。与外部触发锁存信 号 TR1 关联的 LED 控制输出脚输出电平可设置,输出驱动能力 10 mA@3.3V。 接线端口定义见表 10-1, 10-2, 10-3, 10-4。隔离接线板详见 10.3。

4.6 接线举例

图 4-4 单端编码器输入 ENC7480 卡接线图

将单端编码器信号线与 7480 编码器接口正端相连, 负端悬空; 如果编码器无 EZ+信号, 则 7480 的 EZ 信号也悬空。

4.6.2 与差分输出的编码器连接

图 4-5 异步差分触发信号(轴1)接线图 将单端编码器信号线与 7480 编码器接口一一对应相连即可。

4.6.2 与一分五转接线连接

与 CABLE37-1-5F-CG 转接线连接

图 4-6 CABLE37-1-5F-CG 转接线接脚定义

图 4-7 CABLE37-1-5F-ES 转接线接脚定义

图 4-8 CABLE37-0.15-5B 转接线接脚定义

MDF6 测头接口与 RENISHAW 接触式测头接口连接对应如	下表:
----------------------------------	-----

MDF6 引脚	MDF6 定义	RENISHAW 引脚	RENISHAW 定义
1	空		
2	LED	3	LED+
3	GND	1	LED-
4	TR1+	4	PROBE+
5	GND	5	PROBE-
6	GND 与信号线		
	屏蔽层连接 *		
		2	测头外壳(不连接) * *

*: 测头与 MDF6 之间的转接线需使用屏蔽线,一般情况下使用单层屏蔽即可。 **: RENISHAW 测头引脚第 2 脚与测头金属外壳连通,用单层屏蔽线作信号线时不要使 用;当系统干扰比较严重时,比如使用交流伺服电机,可能干扰测头信号而出现误锁存现象, 这时必须使用双层屏蔽线,内层屏蔽在 MDF6 端接 6 脚,内层屏蔽在 RENISHAW 测头端悬 空,外层屏蔽在 MDF6 端接连接器外壳,在 RENISHAW 测头端接 2 脚与测头外壳连通。

第五章 ENC7480 测试软件使用

ENC7480 测试软件是雷赛公司为了便于用户熟悉该产品的计数功能和相关 函数而配套提供的一个演示软件。利用这个软件,用户既可以很快熟悉 ENC7480 卡的软硬件功能,又可以方便快捷地测试编码器各种信号的性能特性,见图 5-1。

图 5-1 ENC7480 测试软件主界面

当你按照前面的说明,将卡安装到计算机上,并接好编码器(光栅尺)和触

发信号源,例如测头后,打开这个测试软件,拉动光栅尺,就可以看到计数器中, XYZ 显示光栅尺送出的脉冲信号;当有外部触发信号时,锁存器中 XYZ 显示出 触发的一瞬间,光栅尺的读数值,见图 5-2。不断地触发,在左边的空白窗口内, 显示全部的锁存值。通过点选,可以构造出 4 种计数方式,非 AB 相及 AB 相的 信号 1、2、4 倍频见图 5-3。

图 5-2 计数器锁存器中的数值

计数精度设置栏为直线编码器分辩率设置,这样锁存值显示将以小数方式显示,单位为 mm。

设置 EZ (索引)信号的有效逻辑电平,同时可以允许/禁止 EZ 信号复位计数器 (即由外部提供的 EZ 信号对计数器的值清零),见图 5-4。

EZ1	EZ2	-EZ3	EZ4
● 低有效	● 低有效	● 低有效	● 低有效
○ 高有效	○ 高有效	○ 高有效	○ 高有效
ⓒ 禁止清零	ⓒ 禁止清零	④ 禁止清零	ⓒ 禁止清零
€ 允许清零	○ 允许清零	○ 允许清零	○ 允许清零

图 5-4 EZ 信号的设置

软件还设置了 4 个功能选择按钮,见图 5-5。点击"I/O测试"按钮,会弹出 一个子窗口,见图 5-6,通过这个窗口,可以测试 ENC7480 的全部输入、输出口。

图 5-5 复位选择和 I/O 测试

🔄 Enc7480-	⊧ Ⅰ/0测试				×
「通用輸入端」			- 通用输出端口		
输入口1	输入口13	输入口25	输出口1 🍙	输出口13 💶	输出口25 💶
输入口2	输入口14	输入口26	输出口2 🔳	输出口14 💶	输出口26 💶
输入口3	输入口15	输入口27	输出口3 🔳	输出口15 💶	输出口27 💶
输入口4	输入口16	输入口28	输出口4 🔳	输出口16 🔳	输出口28 💶
输入口5	输入口17	输入口29	输出口5 🔳	输出口17 🔳	输出口29 💶
输入口6	输入口18	输入口30	输出口6 🔳	输出口18 🔳	输出口30 💶
输入口7	输入口19	输入口31	输出口7 🔳	输出口19 🔳	输出口31 💶
输入口8	输入口20	输入口32	输出口8 🔳	输出口20 🔳	输出口32 💶
输入口9	输入口21		输出口9 🔳	输出口21 🔳	
<mark>输入口10</mark>	输入口22		输出口10 🔳	输出口22 🔳	
输入口11	输入口23		输出口11 🔳	输出口23 🔳	
<mark>输入口12</mark>	<mark>输入口24</mark>		输出口12 💶	输出口24 💶	

图 5-6 I/O 测试主界面

使用 API 函数测试工具,单次或者设定次数执行函数,可以以不同参数调用 函数,直观的看到函数的执行效果,快速熟悉 API 函数。见图 5-7。

·函数编号—3	- 实参列表 参数1 0	参数2 0	参数3 0	参数4 0	参数5 0		i 1000
·函数返回值 0	引用参数: 参数1 0	表 参数2 0	参数3 0	参数4 0	参数5 0		执行 终止
1. 2. 3. 4. 5. 6. 7. 8. 9. 10 11 12 13 14 15	int Enc748 void Enc748 long Enc748 long Enc748 void Enc748 void Enc748 void Enc748 long Enc748	80_Init(voi 80_Close() 80_Get_En 80_Get_En 80_Get_La 80_Count_ 80_Write_(80_Write_(80_Read_ 480_Read_ 480_Reset_ 480_Reset_ 480_Reset_ 480_Reset_	d); coder(WO) coder(WO) tchValue(V Config(WC OutBit(WC OutPort(WC InPort(WC InPort(WC riger_Logic ogic(WORD Latch_Stat _Cls_Flag(.ogic(WOF	RD axis); RD axis,1on VORD axis,W RD bitno,V ORD cardno ORD cardno ORD cardno c(WORD 10 axis,WORD 6 us(WORD card g(WORD card QCRD card QC cardno,V	g value); ;; /ORD mode vORD Off_(o,DWORD v);); gic); gic); enable,WORD cardno); ardno); ino); VORD Logi); On); ralue); logic);	

图 5-7 API 函数测试界面

API 函数测试界面说明:

- 函数编号: 要测试函数的编号
- 实参列表:要传给选定函数的参数,依次填写;当函数没有参数或者参数少于5 个时,该工具只依次取前面的参数,多余的参数将被忽略。
- 函数返回值: 函数执行完毕返回值将显示在这里。
- 引用参数表: ENC7480 的 API 函数没有引用参数,输入数据该工具不响应,函数执行完毕也不修改。
- 运行次数:可让选定函数执行指定次数,也可终止未执行完的设定值。
- 使用举例:比如要测试 Enc7480_Get_Encoder 函数用法:
 - 1. 在函数编号栏输入函数编号为: 3。
 - 2. 在实参列表第一个参数栏输入0,观察第0轴计数值。
 - 3. 单击运行,第0轴计数值将出现在函数返回值栏。连续执行1000次可观察到第0轴光栅尺计数值以10ms为间隔连续变化。

第六章 应用软件开发

6.1 用户应用软件开发简介

用户在开发应用软件(设备的控制软件)的过程中,主要完成以下任务:

- 操作员的操作信息通过操作接口(包括显示屏和键盘)传递给机器控制 软件。
- 2) 机器控制软件将操作信息转化为功能参数并根据这些参数调用 DLL 库中的功能函数。

用户不需要了解更多硬件电路的细节,就能够使用 C、C++、Visual Basic 等程序语言调用这些函数来快速开发出自己的应用软件。

另外,在本章中还有实现 ENC7480 卡主要功能(读数、锁存数据)的源代码,您甚至可以直接用在您的应用软件中。

6.2 Visual Basic 6.0 环境下的软件开发介绍

请确保 ENC7480 卡已经插入到你的计算机插槽中,安装好驱动程序和 Enc7480Motion.exe 测试软件和 VB,在调用 ENC7480 功能函数时,请按照下列 步骤进行:

- 1) 启动 Enc7480Motion.exe 测试软件,进行所需功能的简单测试,如: 触发信号、锁存功能、编码显示。
- 2) 建立自己的工作目录,如: d:\VBENC(目录名可自定)。
- 3) 将 enc7480.bas 文件复制到该工作目录下(此文件在资料光盘的函数 库中的 VB6.0 目录下)。
- 4) 运行 VB,并新建一个工程,然后保存此新建的工程到工作目录中。
- 5) 将功能函数库链接到你的工程项目中。
- 6) 在 VB 编译器的"工程 (P)"菜单中选择"添加模块"。
- 7) 选择"现存"。
- 8) 选择文件 "enc7480.bas"。
- 9) 选择"确定"。
- 10) 功能函数的调用:

当你将功能函数链接到工程项目中后,就可以像调用其他 API 函数 一样直接调用功能函数,每个功能函数的具体定义,请参考第七章,当 然也可以打开模块文件 enc7480.bas 了解每个函数的具体定义。

6.3 Visual C++ 6.0 环境下的软件开发介绍

请确保 ENC7480 卡已经插入到你的计算机插槽中,安装好驱动程序和 Enc7480Motion.exe 测试软件和 VC,在调用 ENC7480 功能函数时,请按照下列 步骤进行:

- 1、启动 Enc7480Motion.exe 测试软件,进行所需功能的简单测试,如: 触发信号、锁存功能、编码器计数显示。
- 2、运行 VC,并建立一个工程,将工程命名为 VCENC (可自定)。
- 3、将 enc7480.lib、enc7480.dll 和 enc7480.h 文件复制到该目录下。(这两 个文件在资料光盘的函数库中的 VC6.0 目录下)。
- 4、将功能函数库添加到你的项目中:
 - a. 将 enc7480.lib 加入到工程中。
- b. 在调用功能函数的文件顶端中加入 #include "enc7480.h"。5、功能函数的调用:

当你将功能函数库添加到工程项目中后,就可以象调用其他 API 函数一样直接调用功能函数,每个功能函数的具体定义,请参考第七章,当然也可以打开头文件 enc7480.h 了解每个函数的具体定义。

6.4 ENC7480 功能函数

-		
序号	函数名称	功能描述
1	Enc7480_Init	初始化计数卡
2	Enc7480_Close	关闭计数卡
3	Enc7480_Get_Encoder	读取指定轴编码器计数值
4	Enc7480_Set_Encoder	设置指定轴编码器初始值
5	Enc7480_Get_LatchValue	读取指定轴锁存器的值
6	Enc7480_Count_Config	配置计数方式
7	Enc7480_Set_Triger_Logic	设置外触发信号有效电平
8	Enc7480_Set_EZ_Logic	设置 EZ 索引信号有效电平和使能清零功能
9	Enc7480_Read_Latch_Status	读取锁存器和外触发信号的状态位
10	Enc7480_Reset_Latch_Flag	复位锁存器状态位
11	Enc7480_Reset_Cls_Flag	复位 EZ 信号状态位
12	Enc7480_Write_OutBit	按位写通用输出口
13	Enc7480_Write_OutPort	写通用输出口
14	Enc7480_Read_OutPort	读通用输出口
15	Enc7480_Read_InPort	读通用输入口
16	Enc7480_Led_Logic	 设置 LED 发光方式

表 6-1 函数功能列表

第七章 功能函数详解

本章介绍 ENC7480 所有的函数功能,并对这些函数的使用方法做了详细的 说明,以便更好、更快地理解和使用这些功能及相关函数。

7.1 int __stdcall Enc7480_Init(void);

功能: Enc7480 卡的初始化函数;

参数:无

返回值:1-初始化成功;0-初始化失败,没有找到计数卡,建议对该函数返回 值进行检查,以免后续函数调用返回无意义的值,造成应用程序隐患。

例程:

```
int Cardno=Enc7480_Init();
if(Cardno==0){
    printf("找不到任何读数卡");
    getch();
    return;
}
```

7.2 void __stdcall Enc7480_Close();

功能:关闭 Enc7480 卡,并释放系统分配给 Enc7480 卡的内存资源。 参数:无 返回值:无。

7.3 long __stdcall Enc7480_Get_Encoder(WORD

axis);

功能: 读取指定轴的编码器计数值,

参数: axis 表示轴号: 0、1、2、3; 多卡时, 轴号依次增加, 轴号从第1张卡算起, 如第2张卡轴号为4、5、6、7, 若再增加卡, 轴号以此类推。

返回值:编码器计数的值。

例程:

long X_Encode=Enc7480_Get_Encoder(0); //读取第 0 轴编码器的计数值并赋给变量 X_Encode

7.4 void __stdcall Enc7480_Set_Encoder(WORD

axis,long value);

功能:设置指定轴计数的初始值。

参数: axis 表示轴号: 0、1、2、3; 多卡时, 轴号依次增加, 轴号从第1张卡算 起, 如第2张卡轴号为4、5、6、7, 若再增加卡, 轴号以此类推。 value 指定计数初始值

返回值:无

例程:

Enc7480_Set_Encoder(0,0); //将第0轴编码器的当前计数值清零

7.5 long __stdcall Enc7480_Get_LatchValue(WORD

axis);

功能:读取指定轴锁存器的值。Enc7480 卡的每个轴都有一个独立计数值锁存器, 并由外触发信号控制,对计数器的值进行瞬间装载;这个值将一直保持不 变,直到锁存状态被清除,之后又产生一个外触发信号。

参数: axis 表示轴号: 0、1、2、3; 多卡时, 轴号依次增加, 轴号从第1张卡算 起, 如第2张卡轴号为4、5、6、7, 若再增加卡, 轴号以此类推。

返回值:返回锁存值

例程:

long Y_Ltc=Enc7480_Get_LatchValue(3); //将 Z 轴锁存器内的值赋给 Y_Ltc

7.6 void __stdcall Enc7480_Count_Config(WORD axis,WORD mode);

功能: 配置计数模式

参数: axis 表示轴号: 0、1、2、3; 多卡时, 轴号依次增加, 轴号从第1张卡算 起, 如第2张卡轴号为4、5、6、7, 若再增加卡, 轴号以此类推。 mode 计数模式:

0---对方向脉冲信号计数

- 1-1 倍 AB 相计数
- 2-2 倍 AB 相计数
- 3-4 倍 AB 相计数

返回值:无

采用4倍AB相计数可充分利用编码器分辩率,建议用户在初始化时就调用并设 置为3。

例程:

Enc7480_Count_Config(1,3); //将 Y 轴的计数方式设为 4 倍 AB 相计数。

7.7 void __stdcall Enc7480_Set_Triger_Logic(WORD

logic);

功能:设置外触发信号的有效工作方式:上升沿触发或下降沿触发。

参数: logic 外触发信号的触发方式:

0- 上升沿有效

1一 下降沿有效

返回值:无

例程:

Enc7480_Set_Triger_Logic(0); //将外触发信号设置为上升沿触发。

提示:对于 RENISHAW 接触式测头,该参数应设为 0。

void __stdcall Enc7480_Set_EZ_Logic(WORD 7.8

axis,WORD enable,WORD logic);

- 功能: 设置 EZ (索引) 信号的有效逻辑电平,同时可以禁止/允许 EZ 信号复位 计数器(即由外部提供的 EZ 信号对计数器的值清零)。
- 参数: axis 表示轴号: 0、1、2、3; 多卡时, 轴号依次增加, 轴号从第1张卡算 起,如第2张卡轴号为4、5、6、7,若再增加卡,轴号以此类推。 enable 定义允许/禁止 EZ 信号复位计数器:

0— 禁止 EZ 信号将计数器清零

1— 允许 EZ 信号将计数器清零

logic 定义 EZ 信号的有效逻辑电平:

- 0— 低电平有效
- 1— 高电平有效

返回值:无

例程:

Enc7480_Set_EZ_logic(0,1,0); //允许第 0 轴 EZ 信号低电平清零

注: EZ 为编码器第3相信号,是一个周期性的信号,其精度比较高,一般为编

码器的分辩率级别,可以用作回零;

对于旋转编码器,该信号一般命名为: EZ+ / EZ-,每旋转一周该信号出现一次;

对于光栅尺,该信号一般命名为 RI+ / RI-,译为: reference index,不同 厂家生产的光栅尺该信号个数不一样,有单个的有多个的,一般用于回零; 多个的每隔 50mm 一个,用两端的任一个回零,也可以用做区段补偿。

<u>无论旋转编码器还是直线编码器,该信号均是一个脉冲,若是正脉冲,则</u> logic 应设为 1,否则应设为 0,错误的设置将导致光栅尺不计数(在没有脉 冲到来时计数值将一直被清 0)。

7.9 long__stdcall Enc7480_Read_Latch_Status(WORD cardno);

功能: 读取指定卡号的锁存器的触发状态和外触发信号的电平状态

参数: cardno 表示卡号。

返回值:见表 7-1。

例程:

long status=Enc7480_Read_Latch_Status(0)&0x10 //读取 EZ1 的电平

表 7-1 锁存器状态位的定义

返回值的位号	描述
0~3	外触发信号的电平状态: 0-低电平; 1-高电平
4~7	EZ1~EZ4 信号的电平状态: 0—低电平; 1—高电平
8~11	分别表示 0、1、2、3 轴锁存器的触发状态位: 0—复位状态(即无触发); 1—触发状态(表示已经产生触发锁存); 注: 任何轴的触发状态值为 1 时,即使外触发信号再次产生满足规定 的跳变边沿,这个轴的锁存器也不会锁存新的计数值,直到调用 Enc7480_Rest_Latch_Flag 函数复位触发状态。 注意: 这样做的原因是开关式触发信号动作时在有效的跳变之后会拌有 抖动,而无用的抖动边沿导致有效信号锁存的计数值被覆盖。 因此这个标记有两个作用: 一. 查询到该标记后调用 Enc7480_Get_LatchValue 读取锁存值; 二. 可由软件检测到抖动结束后调用 Enc7480_Rest_Latch_Flag 函数清除 该标记。详细信息请参照 " 第八章: 编程示例 "
12~15	分别表示 0、1、2、3 轴 EZ 信号复位(清零)计数器的标记状态位: 1—表示 EZ 信号已经将计数器复位(设为 0)。

7.10 void __stdcall Enc7480_Reset_Latch_Flag(WORD

cardno);

功能:复位(恢复)锁存状态;参阅 Enc7480_Get_Latch_Flag 函数 参数: cardno 表示卡号。 返回值:无

7.11 void __stdcall Enc7480_Reset_Cls_Flag(WORD cardno);

功能:计数器清零标记状态位清零。 参数: cardno 表示卡号。 返回值:无

7.12 void __stdcall Enc7480_Write_OutBit(WORD bitno,WORD Off_On);

功能:按位号写通用输出口,Enc7480 卡共有 32 位通用输出口,对应的位编号从 1 开始,分别是: 1、2、...、32;多卡时,第 2 张卡对应位编号加 32从 33 开始,分别是: 33、34、...、64,若再增加卡,以此类推。
参数: bitno 表示通用输出口位号。
Off_On 指定输出口的电平状态分两种情况:
当 JPn (n=1, 2, 3, 4)开路时,对应的输出口:
0-高电平
1-低电平
当 JPn (n=1, 2, 3, 4)短路时,对应的输出口:
0-低电平
1-高电平
返回值:无
例程:

Enc7480_Write_OutBit(32,1); //当 JP4 短路时,将第 32 输出口置高电平。其它端口电 平状态不变

7.13 void __stdcall Enc7480_Write_OutPort(WORD

cardno,DWORD value);

功能:写通用输出口,一次性修改所有输出口;参阅 Enc7480_Write_OutBit 函数。 参数: cardno 表示卡号。

value 为 32 位的控制字,0 位~31 位分别表示对应的输出口 1~32 的位号。 多卡时,第 2 张卡对应位编号加 32 从 32 开始,32 位~63 位分别表示对 应的输出口 33~64 的位号,若再增加卡,以此类推。

返回值:无

例程:

Enc7480_Write_OutPort(0,0x0f); //当 JP1 短路时,将第一卡低 4 位输出口置高电平。

7.14 long __stdcall Enc7480_Read_OutPort(WORD

cardno);

功能:读通用输出口的状态值

参数: cardno 表示卡号。

返回值:返回由 Enc7480_Write_OutPort(WORD cardno, DWORD value)写入 value 的值。

7.15 long __stdcall Enc7480_Read_InPort(WORD

cardno);

- 功能:读通用输入端口的电平状态; Enc7480 卡共有 32 位的通用输入口,对应的位号是 1~32。多卡时,第2 张卡对应位编号加 32 从 33 开始,对应的位号是 33~64,若再增加卡,以此类推。
- 参数: cardno : 卡号。
- 返回值:返回通用输入端口的电平状态;这个返回值是 32 位的无符号长整型, 位 0~位 31 分别表示通用输入端口的输入位 1 到输入位 32,当输入口为 低电平时,对应位为 0,否则为 1。

7.16 long __stdcall Enc7480_Led_Logic(WORD cardno WORD Logic);

功能:设置 LED 的发光方式

参数: cardno : 卡号

Logic: 定义 LED 发光方式:

Logic = 0 触发信号为低电平时 LED 亮, 触发信号为高电平时灭(上电默认为0)

Logic = 1 触发信号为低电平时 LED 灭,触发信号为高电平时亮。 返回值:无

第八章 编程示例

8.1初始化示例:

```
int Cardno=Enc7480_Init();
if(Cardno==0)
{
    MessageBox("初始化失败,找不到任何读数卡。","提示:");
}
Enc7480_Count_Config(0,3); //正交脉冲4倍频
Enc7480_Set_Triger_Logic(0); //设置触发信号上升沿有效
Enc7480_Reset_Latch_Flag(1); //复位锁存标志寄存器
```

8. 2 编码器计数值操作示例:

int x_position = Enc7480_Get_Encoder(0);//读取第 0 轴编码器计数值 Enc7480_Set_Encoder(1,1000); //设置第 1 轴编码器计数值

8.3位置锁存操作方法,流程及示例:

8.3.1 测头触发信号和位置锁存原理

接触式测头是一个重复性非常高的机械式开关。碰撞和复位时会导致电路信 号发生抖动,如图 7-1 所示是测头信号电压上升及下降过程:

图 7-1 探针动作时测头信号变化波形示意图

由于测头信号的抖动,将在触发瞬间产生数次触发边沿,7480 卡将第一次 上跳变时刻的光栅尺计数值锁存,同时置锁存标志寄存器 BIT9-BIT11,等待 PC 软件读取,PC 软件可调用 Enc7480_Read_Latch_Status 函数查询。

由于抖动信号重复周期不确定,且抖动信号的时间一般为 ms 级,为确保 PC 软件能读取到锁存值,在 PC 软件调用 Enc7480_Reset_Latch_Flag 函数之前,7480 卡不会锁存新的计数值。目的就是为了防止触发瞬间的抖动信号覆盖第一次跳变锁存的值。

PC 软件读取到锁存值后,等待触发信号稳定在低电平(测头完全被释放) 后调用 Enc7480_Reset_Latch_Flag,允许下一次碰撞发生时锁存新的计数值。

8.3.2 测头触发和位置锁存流程图

约定:

- 1. 置位:将标记赋值为1;
- 2. 复位: 将标记赋值为 0;
- 3. 测头触发状态: 接触式测头的红宝石球受力而偏离原始位置
- 4. 测头复位状态: 接触式测头的红宝石球不受任何方向作用力状态
- 一. 初始化程序, 初始化在应用软件启用位置触发功能时执行。
 - 1. 设置触发信号上升还是下降沿触发
 - 2. 复位锁存状态
 - 3. 复位<u>读锁存标记(</u>该标记为用户程序定义)
- 二. 读取位置锁存程序流程,该程序在一个循环中连续调用,以处理设备所需要 的连续位置锁存功能。

8.3.3 编程示例代码

以下代码是针对触发信号为接触式测头编写的。

初始化代码:

int breseted =1;

long Latch_status =0;

long xLatch_Value,yLatch_Value,zLatch_Value;

Enc7480_Count_Config(0,3);

Enc7480_Set_Triger_Logic(0);

Enc7480_Reset_Latch_Flag(0);

//读取锁存值标记 //临时保存锁存状态 //保存锁存值 //设置4倍频计数方式 //设置触发信号上升沿有效 //复位锁存状态

```
在线程或 TIMER 中调用的代码:
Latchstatus = Enc7480_Read_Latch_Status(0);
if ((LatchStatus & 0xF00) && breseted ==1)
{ //
```

//触发信号有发生且没有读取锁存值


```
Sleep(20);
                                            //延时
   Latch_status = Enc7480_Read_Latch_Status(0) & 0xf; //读触发信号引脚状态
                         //引脚状态为高,触发信号确实有效,非干扰信号
   if(Latch_status != 0)
   {
       breseted = 0;
                                            //设置读取标记
       xLatch_Value=Enc7480_Get_LatchValue(0);
                                             //读取触发锁存值
      yLatch_Value=Enc7480_Get_LatchValue(1);
      zLatch_Value=Enc7480_Get_LatchValue(2);
   }
   else //触发信号持续时间少于 20ms,
       //是干扰信号(因为正常触发远远超过 20ms,信号线路处理
       //不好或周围有强干扰源会发生这种现象).丢弃本次锁存值
   {
                                        //复位锁存状态
       Enc7480_Reset_Latch_Flag(0);
   }
}
if(0 == breseted)
                        //锁存值被读取过了但还没有复位锁存状态寄存器
{
   Latch_status = Enc7480_Read_Latch_Status(0) & 0xf; //读取触发信号引脚状态
                        //测头是否被释放
   if(Latch_status == 0)
                        //第一次检查到测头被释放
   {
                        //延时(机械开关抖动时间一般为10~50ms)
       Sleep(15);
       Latch_status = Enc7480_Read_Latch_Status(0) & 0xf;
       if(Latch_status == 0)
                                         //测头是否被释放
       {
                                         //第二次检查到测头被释放
          Sleep(15);
          Latch_status = Enc7480_Read_Latch_Status(0) & 0xf;
          if(Latch_status == 0)
                                        //连续3次检查到测头被释放
          {
                                       //复位锁存状态寄存器
              Enc7480_Reset_Latch_Flag(0);
                                       //设置读取标记
              breseted = 1;
          }
       }
   }
}
```


8. 4I/O口操作示例:

Enc7480_Write_OutBit(0,0); //当跳线帽 jp1 短路时,使第一个输出口输出为低电平, 其它口不变化。

Enc7480_Write_OutPort(0,0x00ff); //第 1 个参数恒为 0; 第二个参数使输出口 0 到 7 输出为高电平(设 jp1-4 均短路,开路则对应引脚输出反向), 8-15 输出低电平 Enc7480_Read_OutPort(0); //读取由 Enc7480_Write_OutPort 写入的值 unsigned int inputpot_status = Enc7480_Read_InPort(0); //读取输入口电平状态

第九章 常见故障排除方法

9.1 概述

本章节列举了一些常见的故障现象和解决方法。如果你仔细阅读了本手册并 严格按照规程操作,你在使用过程中很少会遇到这些问题。如果你确实碰到了问 题,可根据故障现象,按照本章给出的解决方法来处理。

如果还不能解决问题,请联系雷赛公司的销售或技术支持人员。

9.2 故障及排除

根据 ENC7480 卡的功能和特点,我们针对客户遇到的问题给出了一些解决 对策,见表 9-1。

如果你的故障现象在表中没有列出,请联系雷赛公司技术支持人员。

故障现象	排除方法			
计算机不能找到卡	1、关机拔卡,仔细检查金手指部分,			
	如果需要的话,用擦字橡皮轻擦此处,			
	清除氧化层。			
	2、在 WINDOWS 的设备管理器(可参			
	看 WINDOWS 帮助文件)中查看驱动			
	程序安装是否正常。如果发现有黄色叹			
	号标志,说明安装不正确或者 PCI 插槽			
	接触不良,关闭计算机,拔除电源线,			
	重新拔插计数卡再试,若未能解决需要			
	按照 2.4.4 的指引,重新安装。			
	3、计算机主板兼容性差,请咨询主板			
	供应商			
ENC7480不能读入编码器信号	1、请检查编码器信号类型是否是 TTL			
	方波脉冲。			
	2、参看表 4-1 及所选编码器说明书,检			
	3、检查 X1 接口的 1、10、19 脚的电压			
	是否为正常 5V。			
ENC7480 读数不准确	1、检查全部编码器及触发源的接线。			
	2、做好信号线的接地屏蔽			
	3、检查函数调用是否正确			
ENC7480不能锁存编码器读数	1、检查触发源的接线。			
	2、检查函数的调用,锁存器是否复位。			
ENC7480 锁存数据的重复精度差	1、检查函数调用。			
	2、程序中是否进行了去抖动处理。			
	3、触发信号的设定			
数字输入信号不能读入	1、检查接线			
	2、函数调用是否正确			
不能写出数字输出口	1、检查接线			
	2、检查函数的调用			

表 9-1 常见故障及排除方法

第十章 接线板定义 I/O 特性

10.1 非隔离接线板 ACC37-74ENC 引脚表(1)

ENC7480有两个I/O信号接口:X2和X3。这两个接口可通过附件 "IDC40 转 DB37 电缆(见第十一章) "转接至 PC 机机箱上板卡安装孔,之后可用 37PIN 转接线(CABLE37-2.0)连至非隔离接线板 ACC37-74ENC,方便接线。

当 ACC37-74ENC 连接至 X2 接口时, 该接线板为第一 I / O 信号接口, ACC37-74ENC 引脚定义如下:

	1× 10-1		非隔齿按线板 ACC57-74ENC 引脚衣				
脚号	名称	I/O	功 能	脚号	名称	I/O	功 能
1	IN1	Ι	通用输入1	20	GND		PC 电源地
2	IN2	Ι	通用输入2	21	OUT1	0	通用输出1
3	IN3	Ι	通用输入3	22	OUT2	0	通用输出 2
4	IN4	Ι	通用输入4	23	OUT3	0	通用输出3
5	IN5	Ι	通用输入5	24	OUT4	0	通用输出 4
6	IN6	Ι	通用输入6	25	OUT5	Ο	通用输出 5
7	IN7	Ι	通用输入7	26	OUT6	0	通用输出6
8	IN8	Ι	通用输入8	27	OUT7	0	通用输出 7
9	IN9	Ι	通用输入9	28	OUT8	0	通用输出8
10	IN10	Ι	通用输入10	29	OUT9	0	通用输出9
11	IN11	Ι	通用输入11	30	OUT10	0	通用输出 10
12	IN12	Ι	通用输入12	31	OUT11	0	通用输出 11
13	IN13	Ι	通用输入13	32	OUT12	0	通用输出 12
14	IN14	Ι	通用输入14	33	OUT13	Ο	通用输出13
15	IN15	Ι	通用输入15	34	OUT14	0	通用输出14
16	IN16	Ι	通用输入16	35	OUT15	0	通用输出15
17	3.3V	0	PC 电源	36	OUT16	0	通用输出16
18	3.3V	0	PC 电源	37	GND		PC 电源地
19	GND		PC 电源地				

表 10-1 非隔离接线板 ACC37-74ENC 引脚表

10.2 非隔离接线板 ACC37-74ENC 引脚表(2)

当 ACC37-74ENC 连接至 X3 接口时, 该接线板为第二 I / O 信号接口, ACC37-74ENC 引脚定义如下:

	N	10-2	中的丙安线板 ACCJ7-74ENC 升冲农					
脚号	名称	I/O	功 俞	步 脚号	名称	I/O	功	邰
1	IN17	Ι	通用输入	17 20	GND		PC 电	源地
2	IN18	Ι	通用输入	18 21	OUT17	0	通用斩	访出 17
3	IN19	Ι	通用输入	19 22	OUT18	0	通用斩	讨出 18
4	IN20	Ι	通用输入	20 23	OUT19	0	通用输	计出 19
5	IN21	Ι	通用输入2	21 24	OUT20	0	通用斩	〕出 20
6	IN22	Ι	通用输入	22 25	OUT21	0	通用斩	讨出 21
7	IN23	Ι	通用输入	23 26	OUT22	0	通用斩	讨出 22
8	IN24	Ι	通用输入	24 27	OUT23	0	通用斩	讨出 23
9	IN25	Ι	通用输入	25 28	OUT24	0	通用斩	讨出 24
10	IN26	Ι	通用输入	26 29	OUT25	0	通用斩	讨出 25
11	IN27	Ι	通用输入	27 30	OUT26	0	通用斩	讨出 26
12	IN28	Ι	通用输入	28 31	OUT27	0	通用斩	〕出 27
13	IN29	Ι	通用输入	29 32	OUT28	0	通用斩	讨出 28
14	IN30	Ι	通用输入的	30 33	OUT29	0	通用斩	讨出 29
15	IN31	Ι	通用输入的	31 34	OUT30	0	通用斩	讨出 30
16	IN32	Ι	通用输入的	32 35	OUT31	0	通用斩	讨出 31
17	3.3V	0	PC 电源	36	OUT32	0	通用斩	讨出 32
18	3.3V	0	PC 电源	37	GND		PC 电	源地
19	GND		PC 电源地	<u>b</u>				

表 10-2 非隔离接线板 ACC37-74ENC 引脚表

10.3 I/O 隔离参考图电路以及输出口负载能力曲线

ACC37-7480 是带隔离功能的 I / O 接口板,可接到 X2 和 X3 上,在端口定义中,除了多了一个外部电源(12-24V)的接口外,其它的 IO 端口定义与非光隔的 ACC37-74ENC 一致,见表 10-1、10-2。ACC37-7480 接口板原理图(建议原理图和参数)如下,可自行设计隔离板,也可提出要求向雷赛公司订制。

- 图 10-1,图 10-2 原理图仅适用如下情况:
- 1. 输入输出电压 12-24V
- 2. 输出电流小于 100mA
- 3. I/0线路传输延迟不低于 20uS

如果对输出负载能力,传输时间要求严格,请修改电路参数或 选用高速的光电隔离器和输出驱动晶体管或委托雷赛公司设计制 作。

图 10-2 光电隔离输出电路原理图

ENC7480 输出口额定负载能力为 10mA,建议使用灌电流方式设计 I/O 隔离接线板。

低电平: 0-1.48 V 高电平: 1.52-3.3V 不确定: 1.49-1.51V 注: 输入口无施密特电路。

第十一章 选型指南

根据客户使用的不同, ENC7480 具体分为两类产品: ENC7480 具有计数、锁存等基本功能: ENC7480-IO 在 ENC7480 的功能基础上,增加了 IO 功能。

订货型号: ENC7480

装箱物件:

ENC7480	1 块
接线板: ACC37-74ENC	1 块
37 针电缆线: CABLE37-2.0	1 根
ENC7480 资料光盘(测试软件,驱动安装,编程资料)	1 张

订货型号: ENC7480-IO

装箱物件

ENC7480-IO	1	块
接线板: ACC37-74ENC	1	块
37 针电缆线: CABLE37-2.0	1	根
ENC7480 资料光盘(测试软件,驱动安装,编程资料)	1	张

I/O 功能需用配件: (配件数量由 I/O 数量决定)

配套电缆线:

IDC40 转 DB37 电缆	1-2 根
DB37 针电缆线: CABLE37-2.0	1-2 根
IDC20 针扁平电缆线	1根(如果需要)
配套接线板:	
非隔离 ACC37-74ENC	1-2 块
非隔离 ACC20ENC	1块(如果需要)
光电隔离 ACC37-7480	1-2 块

如需光电隔离板,请与雷赛公司联系,也可以自行设计制造,参考电路见第 十章。

可选件:

为了方便客户的使用,针对测量机用户,雷赛公司定制出专用线缆,取代接 线板和线缆,而且,接线更简单、快捷、可靠。客户在选用之前,需检查所使用 的光栅尺及测头的接口定义。

特殊电缆 1: CABLE37-0. 15-5 150 毫米长 1 分 5 电缆 一根 接口定义,见图4-6。

ENC7480 编码器计数卡使用手册 V1.2

特殊电缆 2: CABLE37-1-5F-ES	1米长1分5电缆	一根
接口定义,见图 4-7。		
特殊电缆 2: CABLE37-1-5F-CG	1米长1分5电缆	一根
接口定义,见图 4-8。		

可选附件图片

CABLE37-2.0

ACC37-74ENC

ACC37-7480

EB37

CABLE37-0.15-5B

注:

使用 ENC7480 进行一般测量应用时,请选用 CABLE37 电缆和 ACC37-74ENC 接线板;

如果还要进行 I/O 控制,则还需要 EB37 扩展支架、CABLE37 电缆和 ACC37-74EN (非隔离)、ACC37-7480(光电隔离)接线板。

ENC7480应用在手动测量机上时,可以直接使用 CABLE37-0.15-5B 一分五电缆。

深圳市雷赛智能控制股份有限公司

- 地 址: 深圳市南山区南油天安工业区6栋4楼
- 邮 编: 518054
- 电话: 0755-26417575
- 传 真: 0755-26417609
- Email: info@szleadtech.com
- 网 址: http://www.szleadtech.com